Command line Training Set First Motif Summary of Motifs Termination Explanation


Search sequence databases with these motifs using MAST.
Submit these motifs to BLOCKS multiple alignment processor.
Build and use a motif-based hidden Markov model (HMM) using Meta-MEME.


MEME - Motif discovery tool

MEME version 3.0.14 (Release date: 2005/07/19 07:15:54)

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme.nbcr.net.

This file may be used as input to the MAST algorithm for searching sequence databases for matches to groups of motifs. MAST is available for interactive use and downloading at http://meme.nbcr.net.


REFERENCE

If you use this program in your research, please cite:

Timothy L. Bailey and Charles Elkan, "Fitting a mixture model by expectation maximization to discover motifs in biopolymers", Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994.


TRAINING SET

DATAFILE= crp0.s
ALPHABET= ACGT
Sequence name            Weight Length  Sequence name            Weight Length  
-------------            ------ ------  -------------            ------ ------  
ce1cg                    1.0000    105  ara                      1.0000    105  
bglr1                    1.0000    105  crp                      1.0000    105  
cya                      1.0000    105  deop2                    1.0000    105  
gale                     1.0000    105  ilv                      1.0000    105  
lac                      1.0000    105  male                     1.0000    105  
malk                     1.0000    105  malt                     1.0000    105  
ompa                     1.0000    105  tnaa                     1.0000    105  
uxu1                     1.0000    105  pbr322                   1.0000    105  
trn9cat                  1.0000    105  tdc                      1.0000    105  

COMMAND LINE SUMMARY

This information can also be useful in the event you wish to report a
problem with the MEME software.

command: meme crp0.s -dna -mod oops -pal 

model:  mod=          oops    nmotifs=         1    evt=           inf
object function=  E-value of product of p-values
width:  minw=            8    maxw=           50    minic=        0.00
width:  wg=             11    ws=              1    endgaps=       yes
nsites: minsites=       18    maxsites=       18    wnsites=       0.8
theta:  prob=            1    spmap=         uni    spfuzz=        0.5
em:     prior=   dirichlet    b=            0.01    maxiter=        50
        distance=    1e-05
data:   n=            1890    N=              18
strands: +
sample: seed=            0    seqfrac=         1
Letter frequencies in dataset:
A 0.303 C 0.183 G 0.209 T 0.306 
Background letter frequencies (from dataset with add-one prior applied):
A 0.303 C 0.183 G 0.209 T 0.306 

P N
MOTIF 1     width = 16     sites = 18     llr = 147     E-value = 1.1e-002

SimplifiedA::119322412:1818
pos.-specificC111:1242222:8:81
probabilityG18:8:2322421:111
matrixT8181:314223911::
bits 2.5
2.2
2.0
1.7
Information 1.5  
content 1.2      
(11.8 bits)1.0        
0.7          
0.5          
0.2            
0.0
Multilevel TGTGAACTAGTTCACA
consensus TGAGCA
sequence CACTTC
GG
NAME   START P-VALUE    SITES 
pbr322562.01e-06 CCATATGCGGTGTGAAATACCGCACAGATGCGTAAG
tnaa747.04e-06 CCCGAACGATTGTGATTCGATTCACATTTAAACAAT
deop2107.04e-06 AGTGAATTATTTGAACCAGATCGCATTACAGTGAT
male179.68e-06 CCGCCAATTCTGTAACAGAGATCACACAAAGCGACG
ce1cg641.32e-05 AGACTGTTTTTTTGATCGTTTTCACAAAAATGGAAG
bglr1791.77e-05 AGTTAATAACTGTGAGCATGGTCATATTTTTATCAA
ara581.77e-05 ACATTGATTATTTGCACGGCGTCACACTTTGCTATG
tdc811.95e-05 AAAGTTAATTTGTGAGTGGTCGCACATATCCTGTT
ompa511.95e-05 TTTTCATATGCCTGACGGAGTTCACACTTGTAAGTT
lac121.95e-05 ACGCAATTAATGTGAGTTAGCTCACTCATTAGGCAC
malt442.84e-05 GATTTGGAATTGTGACACAGTGCAAATTCAGACACA
crp663.11e-05 ACTGCATGTATGCAAAGGACGTCACATTACCGTGCA
uxu1208.20e-05 GTGAAATTGTTGTGATGTGGTTAACCCAATTAGAAT
cya539.69e-05 ATCAGCAAGGTGTTAAATTGATCACGTTTTAGACCA
malk641.24e-04 TAAGGAATTTCGTGATGTTGCTTGCAAAAATCGTGG
gale541.71e-04 ATTTATTCCATGTCACACTTTTCGCATCTTTGTTAT
ilv423.15e-04 CAGTACAAAACGTGATCAACCCCTCAATTTTCCCTT
trn9cat871.70e-03 TTGGCGAAAATGAGACGTTGATCGGCACG

Motif 1 block diagrams

NameLowest
p-value
   Motifs
pbr322 2e-06

1
tnaa 7e-06

1
deop2 7e-06

1
male 9.7e-06

1
ce1cg 1.3e-05

1
bglr1 1.8e-05

1
ara 1.8e-05

1
tdc 1.9e-05

1
ompa 1.9e-05

1
lac 1.9e-05

1
malt 2.8e-05

1
crp 3.1e-05

1
uxu1 8.2e-05

1
cya 9.7e-05

1
malk 0.00012

1
gale 0.00017

1
ilv 0.00032

1
trn9cat 0.0017

1
SCALE
| | | |
1 25 50 75

Motif 1 in BLOCKS format


to BLOCKS multiple alignment processor.
Motif 1 position-specific scoring matrix


Motif 1 position-specific probability matrix






Time  1.77 secs.


P N
SUMMARY OF MOTIFS


Combined block diagrams: non-overlapping sites with p-value < 0.0001

NameCombined
p-value
   Motifs
ce1cg 1.18e-03

1
ara 1.59e-03

1
bglr1 1.59e-03

1
crp 2.80e-03

1
cya 8.69e-03

1
deop2 6.33e-04

1
1
gale 1.53e-02

ilv 2.80e-02

lac 1.75e-03

1
male 8.71e-04

1
malk 1.11e-02

malt 2.55e-03

1
ompa 1.75e-03

1
tnaa 6.33e-04

1
uxu1 7.35e-03

1
pbr322 1.81e-04

1
trn9cat 1.42e-01

tdc 1.75e-03

1
SCALE
| | | |
1 25 50 75

Motif summary in machine readable format.
Stopped because nmotifs = 1 reached.


CPU: emboss11.ebi.ac.uk


EXPLANATION OF MEME RESULTS

The MEME results consist of:

MOTIFS

For each motif that it discovers in the training set, MEME prints the following information:


Go to top